Search results

Search for "sub-molecular resolution" in Full Text gives 9 result(s) in Beilstein Journal of Nanotechnology.

Protruding hydrogen atoms as markers for the molecular orientation of a metallocene

  • Linda Laflör,
  • Michael Reichling and
  • Philipp Rahe

Beilstein J. Nanotechnol. 2020, 11, 1432–1438, doi:10.3762/bjnano.11.127

Graphical Abstract
  • -molecular resolution imaging at 77 K [37][38] and 300 K [39]. Due to the predominant repulsive interactions with the chemically rather inert hydrogen atoms, we speculate that the chemical identity of the tip is therefore of secondary importance. Still, the tip has to be sharp enough to allow for resolving
  • molecular orientation on the surface. The experimental observation of the dumbbell shape suggests that the prerequisite of a stable tip during repulsive interactions with the hydrogen atoms can easily be fulfilled, even at room temperature. This is in line with previous findings of stable tips for sub
PDF
Album
Full Research Paper
Published 22 Sep 2020

Polymorphic self-assembly of pyrazine-based tectons at the solution–solid interface

  • Achintya Jana,
  • Puneet Mishra and
  • Neeladri Das

Beilstein J. Nanotechnol. 2019, 10, 494–499, doi:10.3762/bjnano.10.50

Graphical Abstract
  • leading to the formation of molecular arrays. In region II, the molecular arrangement exhibits carpet-like striations. The angle between the two length-wise orientations of the molecules in region II is measured to be approximately 70°. As depicted in the STM images with sub-molecular resolution (Figure
  • theoretical simulations [24][25][26]. For this purpose, our experimental results with sub-molecular resolution can provide valuable inputs for future theoretical calculations on related molecule–substrate systems. Another possible reason for the observed polymorphism could be attributed to a competition
  • the solution–solid interface. (a) Large-scale STM image; Vs = 1.4 V, It = 1 nA. (b) STM image showing two polymorphs separated by a domain boundary indicated by a solid white line. Vs = 0.8 V, It = 400 pA. (c, d) STM images with sub-molecular resolution depicting the molecular packing in the two
PDF
Album
Supp Info
Full Research Paper
Published 18 Feb 2019

Anchoring of a dye precursor on NiO(001) studied by non-contact atomic force microscopy

  • Sara Freund,
  • Antoine Hinaut,
  • Nathalie Marinakis,
  • Edwin C. Constable,
  • Ernst Meyer,
  • Catherine E. Housecroft and
  • Thilo Glatzel

Beilstein J. Nanotechnol. 2018, 9, 242–249, doi:10.3762/bjnano.9.26

Graphical Abstract
  • (II) oxide (NiO); non-contact atomic force microscopy; p-type semiconductor; sub-molecular resolution; Introduction Inorganic substrates functionalized with organic molecules are nowadays highly regarded materials for emerging hybrid technologies including molecular electronics, photocatalysts or
PDF
Album
Supp Info
Full Research Paper
Published 23 Jan 2018

Adsorption of iron tetraphenylporphyrin on (111) surfaces of coinage metals: a density functional theory study

  • Hao Tang,
  • Nathalie Tarrat,
  • Véronique Langlais and
  • Yongfeng Wang

Beilstein J. Nanotechnol. 2017, 8, 2484–2491, doi:10.3762/bjnano.8.248

Graphical Abstract
  • adopts a deckchair form (C2h). These conformations have been identified in sub-molecular resolution STM images on a Au(111) surface as shown in the work of N. Lin et al. [16] for the saddle conformation (twofold symmetry) and in the work of Gopakumar et al. [11] for the planar conformation (fourfold
PDF
Album
Full Research Paper
Published 23 Nov 2017

Modelling of ‘sub-atomic’ contrast resulting from back-bonding on Si(111)-7×7

  • Adam Sweetman,
  • Samuel P. Jarvis and
  • Mohammad A. Rashid

Beilstein J. Nanotechnol. 2016, 7, 937–945, doi:10.3762/bjnano.7.85

Graphical Abstract
  • obtained during imaging of planar organic molecules [3][4]. An important development in the interpretation of sub-molecular resolution imaging has been the explicit consideration of deflection (i.e., mechanical deformation) in the tip–sample junction [5][6][7], which can result in contrast enhancement [6
  • experimental system to which we compare our results. Typically, in sub-molecular resolution imaging experiments, well defined atoms (such as Xe or Cl), or molecules (such as CO) are picked up from metal surfaces onto metal-coated tips by STM protocols [3]. In our experimental data the initial tip termination
PDF
Album
Supp Info
Full Research Paper
Published 29 Jun 2016

Uncertainties in forces extracted from non-contact atomic force microscopy measurements by fitting of long-range background forces

  • Adam Sweetman and
  • Andrew Stannard

Beilstein J. Nanotechnol. 2014, 5, 386–393, doi:10.3762/bjnano.5.45

Graphical Abstract
  • the molecule is imaged at a low setpoint to reduce the chance of perturbing the tip state, and consequently no sub-molecular resolution is obtained. After obtaining the image, single point Δf(z) spectra were taken on the silicon adatoms, the cornerholes, on top of the molecule, and ‘off’ the molecule
PDF
Album
Full Research Paper
Published 01 Apr 2014

Intermolecular vs molecule–substrate interactions: A combined STM and theoretical study of supramolecular phases on graphene/Ru(0001)

  • Michael Roos,
  • Benedikt Uhl,
  • Daniela Künzel,
  • Harry E. Hoster,
  • Axel Groß and
  • R. Jürgen Behm

Beilstein J. Nanotechnol. 2011, 2, 365–373, doi:10.3762/bjnano.2.42

Graphical Abstract
  • '-BTP adlayer on graphene/Ru(0001), with sub-molecular resolution. We can clearly identify the molecules and the hexagonally arranged hills of the graphene adlayer (see marked triangle). The molecules are exclusively adsorbed in the valleys of the graphene film, while the hills remain unoccupied. This
  • molecule (Figure 5a–c). These voids indicate that the graphene/Ru(0001) substrate also exhibits a significant corrugation in the adsorption potential for PTCDA, although this is less pronounced, relative to intermolecular interactions, than for 3,3'-BTP. Figure 5c shows a sub-molecular resolution image of
  • PTCDA molecules. Fuzzy impression of molecules on hills indicative of (frustrated) rotation (UT = −0.88 V, IT = 50 pA, T = 125 K, 19 nm × 19 nm). (c) Sub-molecular resolution image revealing the adsorption geometry of the PTCDA molecules. (8 nm × 8 nm, UT = 0.97 V, IT = 110 pA, T = 125 K) (d) Model of
PDF
Album
Full Research Paper
Published 12 Jul 2011

Oriented growth of porphyrin-based molecular wires on ionic crystals analysed by nc-AFM

  • Thilo Glatzel,
  • Lars Zimmerli,
  • Shigeki Kawai,
  • Ernst Meyer,
  • Leslie-Anne Fendt and
  • Francois Diederich

Beilstein J. Nanotechnol. 2011, 2, 34–39, doi:10.3762/bjnano.2.4

Graphical Abstract
  • layers. (b) and (c) 30 × 30 nm2 zoom in of the free standing molecular assembly on a single KBr layer. Clear sub-molecular resolution as well as atomic resolution is observed. After decreasing the set-point, parts of the assembly are removed and the atomic corrugation below becomes visible. Chemical
PDF
Album
Video
Full Research Paper
Published 13 Jan 2011

Tip-sample interactions on graphite studied using the wavelet transform

  • Giovanna Malegori and
  • Gabriele Ferrini

Beilstein J. Nanotechnol. 2010, 1, 172–181, doi:10.3762/bjnano.1.21

Graphical Abstract
  • of the cantilever may show a modification of the oscillation amplitude, frequency, phase or damping. The measurement of these cantilever parameters allows to gain information on the physical properties of the sample with (sub-)molecular resolution [4][5]. The dynamic behavior of a weakly interacting
PDF
Album
Full Research Paper
Published 22 Dec 2010
Other Beilstein-Institut Open Science Activities